Conformationally locked chromophores as models of excited-state proton transfer in fluorescent proteins.

نویسندگان

  • Mikhail S Baranov
  • Konstantin A Lukyanov
  • Alexandra O Borissova
  • Jordan Shamir
  • Dmytro Kosenkov
  • Lyudmila V Slipchenko
  • Laren M Tolbert
  • Ilia V Yampolsky
  • Kyril M Solntsev
چکیده

Members of the green fluorescent protein (GFP) family form chromophores by modifications of three internal amino acid residues. Previously, many key characteristics of chromophores were studied using model compounds. However, no studies of intermolecular excited-state proton transfer (ESPT) with GFP-like synthetic chromophores have been performed because they either are nonfluorescent or lack an ionizable OH group. In this paper we report the synthesis and photochemical study of two highly fluorescent GFP chromophore analogues: p-HOBDI-BF2 and p-HOPyDI:Zn. Among known fluorescent compounds, p-HOBDI-BF(2) is the closest analogue of the native GFP chromophore. These irrreversibly (p-HOBDI-BF(2)) and reversibly (p-HOPyDI:Zn) locked compounds are the first examples of fully planar GFP chromophores, in which photoisomerization-induced deactivation is suppressed and protolytic photodissociation is observed. The photophysical behavior of p-HOBDI-BF2 and p-HOPyDI:Zn (excited state pK(a)'s, solvatochromism, kinetics, and thermodynamics of proton transfer) reveals their high photoacidity, which makes them good models of intermolecular ESPT in fluorescent proteins. Moreover, p-HOPyDI:Zn is a first example of "super" photoacidity in metal-organic complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore

The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unrav...

متن کامل

Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics.

In the preceding paper [Hanson, G. T., McAnaney, T. B., Park, E. S., Rendell, M. E. P., Yarbrough, D. K., Chu, S., Xi, L., Boxer, S. G., Montrose, M. H., and Remington, S. J. (2002) Biochemistry 41, 15477-15488], novel mutants of the green fluorescent protein (GFP) that exhibit dual steady-state emission properties were characterized structurally and discussed as potential intracellular pH prob...

متن کامل

Ultrafast proton shuttling in Psammocora cyan fluorescent protein.

Cyan, green, yellow, and red fluorescent proteins (FPs) homologous to green fluorescent protein (GFP) are used extensively as model systems to study fundamental processes in photobiology, such as the capture of light energy by protein-embedded chromophores, color tuning by the protein matrix, energy conversion by Förster resonance energy transfer (FRET), and excited-state proton transfer (ESPT)...

متن کامل

Photochemistry of Pheomelanin Building Blocks and Model Chromophores: Excited-State Intra- and Intermolecular Proton Transfer.

Pheomelanins, the epidermal pigments of red-haired people responsible for their enhanced UV susceptibility, contain 1,4-benzothiazines and 1,3-benzothiazole as main structural components. Despite the major role played in pheomelanin phototoxicity, the photoreactivity of these species has so far remained unexplored. Static and time-resolved fluorescence spectroscopy was used to identify excited-...

متن کامل

Primary light-induced reaction steps of reversibly photoswitchable fluorescent protein Padron0.9 investigated by femtosecond spectroscopy.

The reversible photoswitching of the photochromic fluorescent protein Padron0.9 involves a cis-trans isomerization of the chromophore. Both isomers are subjected to a protonation equilibrium between a neutral and a deprotonated form. The observed pH dependent absorption spectra require at least two protonating groups in the chromophore environment modulating its proton affinity. Using femtoseco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 13  شماره 

صفحات  -

تاریخ انتشار 2012